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A mechanical system with strongly non-linear oscillatory sections is considered. It is assumed that the 

oscillatory section has only one degree of freedom, and that the equations describing its motion are 

nearly Hamiltonian. A method is developed for deriving perturbed equations of motion for the 

oscillatory section, enabling mutual interaction to occur between non-linear oscillatory sections and 

enabling the motion of the system as a whole to be investigated by averaging methods. The use of the 

method to investigate the dynamics of the linkage of two material points in a motion with strongly non- 

linear longitudinal oscillations is considered. 

THE AVERAGING method effectively enables one to investigate fundamental mechanisms in the 
dynamics of systems with weak non-linear interactions. Nevertheless, its application assumes a 
special form for the notation of the equations of perturbed motion in which the variables des- 
cribing the motion are divided into rapidly and slowly varying ones. The problem of deriving 
perturbed equations of motion, which includes the problem of choosing variables to describe 
the motion, is strictly a problem for theoretical mechanics, and its solution to a large degree 
governs the success or failure of the investigation. 

The introduction of “action-angle” variables is formally a complete solution to the problem 
of deriving perturbed equations of motion for systems whose equations of motion are near to 
integrable Hamiltonian systems. However, in practice these variables have not been widely 
used, because they are connected with the solution of a set of rather complex problems, and 
the representation of generalized coordinates and velocities in terms of “action-angle” 
variables is, in fact, associated with the use of infinite Fourier series. 

For systems that are nearly conservative with a single degree of freedom, a method for 
constructing the first and higher approximations was presented in [l] which did not require the 
explicit solution of the unperturbed equations. In a number of problems the absence in this 
method of an explicit form of the perturbed equations of motion leads to excessively 
complicated transformations and calculations, and also impedes the choice of motion variables 
that are convenient for specific systems. The difficulties associated with the integration of 
implicitly specified functions are overcome in this method by averaging over the solution that 
is being generated. However, in many cases this operation cannot be performed in analytic 
form and therefore has to be performed at each step of the integration. The method presented 
below enables one in many cases to simplify the processes of constructing the equations for the 
first approximation for designated systems, and also significantly widens the range of systems 
investigated. 
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1. STATEMENT OF THE PROBLEM 

The motion of an oscillatory section is described by the equations 

g= -T(x,g)+Em,Y,&k?) (1.1) 

where g is the generalized coordinate of the oscillating link, x and y are, respectively, the slow 
and fast variable vectors describing the motion of other parts of the system 

i = Ex(X,y,&& 

j’= f&y)+ Ey(W’,&i) 0.2) 

and E is the small parameter. 
In unperturbed motion (E = 0) the motion of the oscillatory section has constant parameters 

and does not depend on the motion of the system. In perturbed motion (E 20) there is a weak 
non-linear coupling between the motions of the oscillating section and other parts of the 
system. 

The motion of the oscillating section is close to the motion of a conservative system with one 
degree of freedom. In unperturbed motion the solution of Eqs (1.1) therefore reduces to 
quadratures. In particular cases, when the quadratures are explicitly solvable and one can 
construct a general solution for the oscillatory section which does not contain implicitly 
specified functions, the scheme for deriving the equations of perturbed motion is fairly simple 
[2]. This paper considers cases when it is not possible to construct a general solution for the 
motion of the oscillatory section which does not contain implicitly specified functions. 

2. FUNDAMENTAL PROPERTIES OF THE UNPERTURBED MOTION OF AN 
OSCILLATORY SECTION 

In unperturbed motion E = 0, x = const, and Eqs (1.1) have the first integral 

h = $2 +Wx,g), l-ux,g) = fUw)& 

where h is a constant. The solution is given by the quadrature 

r-to =l$&y f(w) = 2h - 2Wx,g) 

(2.1) 

(2.2) 

In most cases it is impossible to represent g as an explicit function of t. We know [3] that for 
systems with one degree of freedom in a force field two types of motion are possible: 
librational and limiting. For physical representations of the behaviour of an elastic system we 
will only consider librational motion, i.e. motion in which g varies in a periodic manner 
between boundary values g, and g, (gl < gZ), which are simple roots of the equation f(x, 
g) = 0. Then the variation of g can be represented in the form 

g=a-@(w(t)), a=(&+&)/29 b=(g,-gt)/2 

where a and b are the mean and amplitude of the oscillation, respectively, (D(w) is a function 
periodic in w varying over the range [-1, 11, and w is the phase of the oscillation and increases 
monotonically with time. The functions @ and w are related by the equation 

b2 (dcg / dw)2 (dw / dry = 2h - 2l-I (2.3) 



Rvo methods are usually used [3,4] to determine the functions Q, and W. The first method 
sets ~&vt) = cos(w,), so that 

is the oscillation period. Then 

(2.5) 

where the plus sign corresponds to decreasing g and the minus sign to increasing g, and the 
function @&Q) can be represented in the form of a Fourier series 

@2 (~2) -*. z B,, cosnw2, gB;= 
n+D !#=a 

Since the attitude of the oscillations b, the mean value 4, 
regated by the relation 

L 

and the energy constant h are 

(2.7) 

the general form of the oscillation of the section can be described by the formulae 

where or, is the period of the oscillations of g with respect to W. 

3. THE EQUATIONS OF PERTURBED MOTION 

The derivation of the perturbed equations of motion is based on an external principle of the 
method of varying arbitrary constants: the s~~i~~ation of a form of the equations that is 
~onve~e~t for the investigation, and variation of the parameters of this form. Because the 
oscillations of the section are described by an amplitude and phase and in the general case are 
described by formulae (2.8), we take h and w to be the new variables and take relations (2.8) to 
be the change of variable formulae. Differentiating (2.1) with respect to time, we obtain from 
W 

The second equality of (2.8) gives 
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(3.2) 

Consequently, in the general case the system of perturbed equations of motion for the 
oscillatory rod is given by Eqs (3.1) and (3.2). 

From the derivation of the equations it is clear that instead of h one could have chosen any 
other constant of the unperturbed motion which characterizes the amplitude of the oscillations 
of the section. In particular, it can be some function of g, and g,. The coupling between g,, 
g,, h and x is given by relation (2.7). Consequently 

(3.3) 

In the representation g = a- bcosw,, where for unperturbed motion w, is given by Eq. (2.4), 
the equations for the oscillations of the section can be written in the form 

til =Ql +(6cosw, -$t-$6)(bsinw,)-’ 

This form of the equations for the oscillatory section is useful because the oscillations of the 
section are described by trigonometric functions. In addition, in the general case, the 
dependence of Q1 on w, in fact restricts the applications of averaging operators to the case of a 
single fast variable w,. 

In the representation r = a- b@,(w,), where w, = (2rc/o,,)(r - t,,) and o,, is the oscillatory 
period of the section in unperturbed motion, the equations of the oscillatory section differ 
from (3.4) in that the first term in the braces is replaced by 2m@bZWz /a~,, while the second 
equation is replaced by 

where aZ and o,, are unchanged in the perturbed motion, and 02, w,, and &D,/aw, are 
determined from (2.5) and (2.6) for initial values of the parameters x, h. 

This form of the equations is useful in that the phase of the oscillations in the zeroth 
approximation is a linear function of time, which enables one to apply the most fully developed 
and simplest averaging algorithms for autonomous rotating systems [5], i.e. to apply averaging 
over the angular variables. The fixed functions Q2(w2) and &D,/aw, are periodic and can be 
numerically calculated to practically any desired degree of accuracy. 

The method presented has been used to perform a short derivation of the perturbed 
equations of Keplerian motion [6]. 

4. EXAMPLE 

Consider the motion of two material points in a Newtonian field of force, the points being connected by 
a light thread whose elastic properties are described by Hooke’s law. It is assumed that the trajectory of 
the centre of mass is an unperturbed Keplerian orbit. The equations of motion of the system (the link) 
about the centre of mass can be written in the form [7] 
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i/d, s-’ 
I- I I I I 

n I Y / In 1111 1 
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(I 1P2 =--r (3cos2y-1). 
2 R2 

c,= 

(4.1) 

L=(rxi$ r=R2-R, 

Here rp, w and 8 are Euler angles describing the orientation of the link in a non-rotating “perigee” 

system of coordinates, R, and R, are the radius-vectors of the material points with respect to the 

attracting Newtonian centre, c is the stiffness of the thread, m, and m, are the masses of the material 
points, F,, F, and F3 are projections of the Newtonian accelerating field of force along the axes of the 
moving coordinate system, R is the distance from the centre of mass of the link to the attracting centre, u 
is the gravitational constant, and y is the angle between the vector r and the local vertical. 

The method under consideration was used in [7] to investigate rapid link rotations in the cases of small- 

amplitude longitudinal oscillations and in motions which do not deviate from the link, i.e. in the case of 

quasi-linear oscillations. Here we consider rapid rotations of the link in motion regimes with large- 

amplitude longitudinal oscillations with possible deviation from the link. The phase portrait of 
unperturbed longitudinal oscillations is shown in Fig. 1 for c m = 50 s?, L/d = 1 s-i (the lower part of the 
phase portrait being the mirror-image of the upper). It is clear that the oscillations are linear in nature 
only for small amplitudes, while for large amplitudes the character of the oscillations is significantly non- 

linear, i.e. the period and shape of the oscillations are amplitude-dependent. 
We take as the independent variable the angular quantity Q', whose variation with time corresponds to 

the variation of the angle of pure rotation 6” = LI?. Then the longitudinal oscillations in the unpert- 
urbed motion are described by the Binet equations [3] 

L2u2(d2u/dqo2+u,)=6c,,,(l/u-d) +=1/r) 

while the energy integral becomes 

Using the representation 
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(where wU is the period of longitudinal oscillations with respect to “time” Q”), we obtain the equations 
of the perturbed motion of the link in the form 

dv 
&r= 

F~S~IIQ de F~COSQ 

u3L2 sine’ T= l13L2 

dL F2 da~=_d\ycos~ 
v=x’ T &O 

-u*)+ 

(4.2) 

(P=q?O+a, V(u)=rI,+$LV 

For non-resonant motion regimes (wIz and 2x are rationally incommensurable) the equations for the 

first approximation obtained by averaging Eqs (4.2) over Q’ and wg have the form 

de 

T 
=N~sinecos(v-~)sin(v-~), 

d\lr -=~N1~~~esin2(v-Vy) 
dQ” 

da 

dcp” 

db u=o 
dQ” 

(4.3) 

Here v is the true anomaly, e is the eccentricity, p is the focal parameter of the orbit of the centre of 
mass, and it is assumed that at the initial time Q = Q”, i.e. a, = 0. The variation of v does not depend on 
the relative motion and is given by the equation 

dv/dt=(p/p3jx(1+ecosv)2 (4.4) 

while the relation between t and Q’ (v and Q”) is the same as for the unperturbed motion 

dQ’/dt=Lu’ 

Keeping the order of the approximation with respect to the small quantity 

(4.5) 

E=LLgl, 
p3 L2 

from Eqs (4.3)-(4.5) we obtain 
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de 
x=Ara(l+ecosv)singcos(v-v)sin(v-yr) 

(4.6) 

r*2 = l’i dw3 

2lc 0 (a”-buQ3(W3))2 

It follows from Eqs (4.6) that the evolution of the direction of the angular momentum of the link can, 

to a first approximation, be calculated in the same way as the evolution of the angular momentum of a 

dumb-bell with a rod of length (I;” lr*2)1’2. 
We determine the equations describing the main evolutionary effects of the motion of the link by 

averaging (4.6) over v 

d0 
;iJ=o. ~=~Nocos8, a=(yr-yto)cosO (4.7) 

From Eqs (4.6) and (4.7) one can conclude that the amplitude of the longitudinal oscillations, both in 

the case of motion without deviation from the link, and with deviation from the link, do not qualitatively 

change the nature of the evolution of the parameters of the link motion, and only govern the rate of 
precession of the angular momentum in the secular motion and the amplitude of the deviation of its 

motion from uniform precession. 
We remark that the use of form (3.4) of the equations of perturbed motion and averaging over the 

variables w1 and cp in the case of strongly non-linear oscillations leads to false results. 
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